A cold saw is a circular saw designed to cut metal which uses a toothed blade to transfer the heat generated by cutting to the chips created by the saw blade, allowing both the blade and material being cut to remain cool. This is in contrast to an abrasive saw, which abrades the metal and generates a great deal of heat absorbed by the material being cut and saw blade.
As metals expand when heated, abrasive cutting causes both the material being cut and blade to expand, resulting in increased effort to produce a cut and potential binding. This produces more heat through friction, resulting in increased blade wear and greater energy consumption.
Cold saws use either a solid high-speed steel (HSS) or tungsten carbide-tipped, resharpenable circular saw blade. They are equipped with an electric motor and often a gear reduction unit to reduce the saw blade's rotational speed while maintaining constant torque. This allows the HSS saw blade to feed at a constant rate with a very high chip load per tooth.
Cold saws are capable of machining most ferrous and non-ferrous alloys. Additional advantages include minimal burr production, fewer sparks, less discoloration and no dust. Saws designed to employ a flood coolant system to keep saw blade teeth cooled and lubricated may reduce sparks and discoloration completely. Saw blade type and number of teeth, cutting speed, and feed rate all must be appropriate to the type and size of material being cut, which must be mechanically clamped to prevent movement during the cutting process.
The second type of cold saw blade, tungsten carbide-tipped (TCT), are made with an alloy steel body and tungsten carbide inserts brazed to the tips of the teeth. These tips are ground on all surfaces to create tangential and radial clearance and provide the proper cutting and clearance angles on the teeth. The alloy body is generally made from a wear-resistant material such as a chrome vanadium steel, heat treated to 38/42 HRC. The tungsten carbide tips are capable of operating at much higher temperatures than solid HSS, therefore, TCT saw blades are usually run at much higher surface speeds. This allows carbide-tipped blades to cut at faster rates and still maintain an acceptable chip load per tooth. These blades are commonly used for cutting non-ferrous alloys, but have gained significant popularity for ferrous metal cutting applications in the last 10 years. The tungsten carbide inserts are extremely hard (98 HRC) and capable of very long wear life. However, they are less resistant to shock than solid HSS cold saw blades. Any vibration during the cutting process may severely damage the teeth. These cold saw blades need to be driven by a backlash free gear box and a constant feed mechanism like a Ball screw feed.
|
|